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Nitime is a library for the analysis of time-series
developed as part of the Nipy project, an effort
to build open-source libraries for neuroimaging re-
search. While nitime is developed primarily with
neuroimaging data in mind (espespecially functional
Magnetic Resonance Imaging data), its design is
generic enough that it should be useful to other
fields with experimental time-series. The package
starts from a purely functional set of algorithms for
time-series analysis, including spectral transforms,
event-related analysis and coherency. An object-
oriented layer is separated into lightweight data con-
tainer objects for the representation of time-series
data and high-level analyzer objects that couple data
storage and algorithms. Each analyzer is designed to
deal with a particular family of analysis methods and
exposes a high-level object oriented interface to the
underlying numerical algorithms. We briefly describe
functional neuroimaging and some of the unique
considerations applicable to time-series analysis of
data acquired using these techniques, and provide
examples of using nitime to analyze both synthetic
data and real-world neuroimaging time-series.

Introduction

Nitime (http://nipy.sourceforge.net/nitime) is
a library for time-series analysis of data from neu-
roimaging experiments, with a design generic enough
that it should be useful for a wide wide array of
tasks involving experimental time-series data from any
source.
Nitime is one of the components of the NiPy [NiPy]
project, an effort to develop a set of open-source li-
braries for the analysis and visualization of data from
neuroimaging experiments.

Functional MRI: imaging brain activity

One of the major goals of neuroscience is to understand
the correspondence between human behavior and ac-
tivity occurring in the brain. For centuries, physicians
and scientists have been able to identify brain areas
participating in various cognitive functions, by observ-
ing the behavioral effects of damage to those areas.
Within the last ∼ 25 years, imaging technology has
advanced enough to permit the observation of brain
activity in-vivo. Among these methods, collectively
known as functional imaging, fMRI (functional Mag-
netic Resonance Imaging) has gained popularity due
to its combination of low invasiveness, relatively high
spatial resolution with whole brain acquisition, and the

development of sophisticated experimental analysis ap-
proaches. fMRI measures changes in the concentration
of oxygenated blood in different locations in the brain,
denoted as the BOLD (Blood Oxygenation Level De-
pendent) signal [Huettel04]. The cellular processes oc-
curring when neural impulses are transmitted between
nerve cells require energy derived from reactions where
oxygen participates as a metabolite, thus the delivery
of oxygen to particular locations in the brain follows
neural activity in that location. This fact is used to
infer neural activity in a region of the brain from mea-
surements of the BOLD signal therein. In a typical
fMRI experiment this measurement is repeated many
times, providing a spatio-temporal profile of the BOLD
signal inside the subject’s brain. The minimal spatial
unit of measurement is a volumetric pixel, or “voxel”,
typically of the order of a few mm3.
The temporal profile of the acquired BOLD signal is
limited by the fact that blood flow into neurally active
tissue is a much slower process than the changes in the
activity of neurons. From a signal processing perspec-
tive, this measured profile can be seen as the convolu-
tion of a rapid oscillation at rates of O(10 − 1000)Hz
(neuronal activity) with a much slower function that
varies at rates of ∼ 0.15Hz (changes in blood flow due
to neighboring blood vessels dilating and contracting).
This slowly varying blood flow profile is known as the
hemodynamic response function (HRF), and it acts
as a low-pass filter on the underlying brain activity
[Aguirre97].

Figure 1. Signals measured by fMRI are time-series,
illustrated from areas in the human visual cortex
(adapted from Silver et al., 2005; with permission).
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fMRI data analysis and time-series analysis

The interpretation of fMRI data usually focuses on the
analysis of the relationship between the BOLD time-
series in each voxel and the occurrence of events of
behavioral significance, such as the presentation of a
stimulus to the subject or the production of a motor
response by the subject.
Figure 1 presents a rendered image of the brain, pre-
sented with the anterior part of the brain turning left-
wards. Visual areas of the cerebral cortex are located
in the posterior part of the brain. The colored patches
represent different functional regions in the visual cor-
tex: these areas labeled V1-V7 respond to visual stim-
ulation. Each contains a representation of the visual
field such that adjacent locations on the brain surface
respond to stimuli appearing in adjacent locations in
the visual field. The areas IPS1 and IPS2 (named after
their anatomical location in the intraparietal sulcus)
contain an ordered representation of the visual field,
but respond to the allocation of attention instead of
direct visual stimulation [Silver05]. By averaging the
measured BOLD signal over all the voxels in each area,
we obtain time-series representative of the activity in
the region; this is illustrated in the insets for V1 and
IPS2.
Typically, univariate analyses calculate a statistical
measure of the correlation between the actual activ-
ity in each voxel and the activity expected, if the voxel
contains neurons which respond to the behaviorally
relevant events. Clusters of voxels that significantly
correlate with this model are then considered to con-
tain neurons participating in the cognitive function as-
sociated with the behavior in question. Sometimes,
this approach is sufficient in order to answer interest-
ing questions about functional specialization of various
parts of the brain. However, in most cases it is bene-
ficial to further study the time-series measured in the
fMRI with approaches that go beyond univariate anal-
ysis.
One important aspect in further analysis of the time-
series is the definition of regions of interest (ROI)
and the targeting of the analysis to those regions
[Poldrack06]. ROIs are defined based on criteria such
as the known functional specialization of a region in
the brain or the anatomical location of that region.
In an ROI-based analysis, the time-series from all the
voxels in this ROI are extracted and averaged and the
average time-series is then subject to further analysis.
This approach is readily adopted in areas of the brain
where functionally distinct areas can be spatially de-
fined. For example, the areas of the cortex which par-
ticipate in processing of visual information (often re-
ferred to as “visual areas” and denoted by V1, for “pri-
mary visual cortex”, V2, for “secondary visual cortex”,
etc.) each contain an ordered representation of the en-
tire visual field (Figure 1) [Wandell07]. These neigh-
boring regions can thus be spatially separated based
on the layout of their respective visual field “maps”
relative to each other.

One extension of the univariate approach mentioned
above, is to examine the functional relations between
different time-series, extracted from different locations
in the brain. One of the major advantages of fMRI is
that measurements are performed simultaneously from
many different regions of the brain. Therefore, this
method allows us to define not only the correspondence
between the time-series of BOLD in one particular re-
gion and the events that occurred in the environment
while this data was collected, but also the correspon-
dence between time-series collected from one region
and the time-series simultaneously collected in another
region of the brain. This approach is often referred to
as “functional connectivity analysis” [Friston94], where
bivariate and multivariate measures of covariance be-
tween two or more time-series, taken from different ar-
eas in the brain, are calculated. This kind of analysis
allows us to infer not only about the participation of a
particular brain region in a cognitive process of inter-
est, but also about the functional network of regions
and the interplay between activity in these different re-
gions. These analysis techniques can be done using an
ROI based approach (see example, below). However,
they can also be utilized as exploratory data analysis
techniques, in which the connectivity between every
pair of voxels in the brain is calculated and the vox-
els are clustered into functional modules according to
their connectivity.

Nitime

The nitime package tries to provide scientists con-
ducting brain-imaging research with a clean and easy-
to-use interface to algorithms that calculate quanti-
ties derived from the time-series acquired in fMRI ex-
periments. It contains implementations both of meth-
ods previously used in neuroimaging and of time-series
analysis techniques that have yet to be widely used in
neuroimaging. We also aim to develop new and orig-
inal ways of analyzing fMRI data and to make these
methods available to the community of scientists con-
ducting brain-imaging research through nitime. The
algorithms are built to allow calculation of some uni-
variate quantities pertaining to the time-series in ques-
tion, as well as bivariate and multivariate quantities.
They are meant to allow an ROI based approach, as
well as analyses done at the single-voxel level. Many
of the algorithms could be used in the analysis of other
kinds of time-series, whether taken from other modal-
ities of neuroscientific research or even in other fields
of science. Therefore, we have decoupled the parts of
the implementation that are directly related to neu-
roimaging data (functions for reading data from stan-
dard neuroimaging formats, for example), from our
object-oriented design and from the implementation
of algorithms.
Nitime fits within the broader context of other re-
lated Python projects: The TimeSeries SciPy scikit
[TimeSeries] focuses on the analysis of calendar-based
time-series (such as those used in finance), while the
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design of nitime is more directly geared towards ex-
perimental data analysis. BrainVISA [Favre09], is a
package that focuses on fMRI data and provides a
complete array of analysis facilities, including prepro-
cessing, visualization and batch workflows. In con-
trast, nitime is a developer-oriented library that fo-
cuses on implementation of algorithms and generic
data-management objects. Pyhrf [Makni08] is a li-
brary which implements a joint detection-estimation
approach to brain activity. Future development will
hopefully lead to tighter integration of nitime with
this library. Finally, Nitime time-series objects can use
the newly introduced datetime data type in NumPy
but do not depend on it, and can thus be used to ma-
nipulate any data set that fits into an n-dimensional
NumPy array.
Importantly, analysis of fMRI data requires several
steps of pre-processing, such as motion correction and
file-format conversion to occur before this kind of anal-
ysis can proceed. Several software packages, such
as BrainVISA, FSL [Smith04] , AFNI [Cox97] and
SPM [Friston95] implement algorithms which can be
used in order to perform these steps. Furthermore,
the nipype library (http://nipy.sourceforge.net/
nipype/), which is also part of the NiPy project, pro-
vides a Python programming interface to some of these
packages. The design of nitime assumes that the data
has been pre-processed and can be read in either as a
NumPy ndarray or in the standard NIfTI file-format.
Next, we will describe the design of nitime and the
decision-making process leading to this implementa-
tion. Then, we will demonstrate how nitime can be
used to analyze real-world data.

Software design

Today, most high-level software uses object oriented
(OO) design ideas to some extent. The Python lan-
guage offers a full complement of syntactic support to
implement OO constructs, from simple one-line classes
to complex hierarchies. Previous experience has shown
us that designing good OO interfaces is far, far harder
than it appears at first. Most of us who have come to
write software as part of our scientific work but with-
out much formal training in the matter, often prove
surprisingly poor performers at this task.
The simplest description of what an object is in com-
puter science, presents it as the coupling of data and
functions that operate on said data. The problem we
have seen in the past with a literal interpretation of
this description, however, is that it is very easy to build
object hierarchies where the data and the algorithms
are more tightly coupled than necessary, with numer-
ical implementation details living inside the methods
of the resulting objects, and the objects holding too
much state that is freely reused by all methods. This
effectively buries the algorithms inside of objects and
makes it difficult to reuse them in a different design
without carrying the containing objects.

To a good extent, this is the problem that the C++
Standard Template Library tries to address by sepa-
rating containers from algorithms and establishing in-
terfaces for generically coupling both at use time. For
nitime, we have tried to follow this spirit by separat-
ing our implementation into three distinct parts:

1. A purely functional library, nitime.algorithms,
that implements only the numerical part of time-
series analysis algorithms. These functions manip-
ulate NumPy arrays and standard Python types
(integers, floats, etc.), which makes their calling
signatures necessarily somewhat long, in the clas-
sical style of well known libraries such as LAPACK.

2. A set of “dumb” data container objects for time-
series data, that do as little as possible. By forcing
them to have a very minimal interface, we hope
to reduce the chances of making significant de-
sign mistakes to a minimum, or of creating objects
whose interface ’over-fits’ to our needs and is thus
not useful for others. In this respect, we try to
follow the excellent example laid out by Python
itself, whose core objects have small but remark-
ably general and useful interfaces.

3. A set of “smart” objects, which we have called ana-
lyzers, that provide access to the algorithms library
via easy to use, high-level interfaces. These objects
also assist in bookkeeping of state, and possibly
caching information that may be needed in differ-
ent computations (such as the Fourier Transform
of a signal).

Our analyzer objects are a lightweight binding of #1
and #2 above, and thus represent a minimal invest-
ment of effort and code. If they prove to be a poor
fit for a new user of nitime (or for us in the future),
there is no significant loss of functionality and no ma-
jor investment of time has been made for naught. The
real value of the library lies in its algorithms and con-
tainers, and users should be free to adapt those to the
task at hand in any way they see fit. We now provide a
brief overview of these three components, whose use we
will illustrate in the next section with a more detailed
example.

Algorithms

The nitime.algorithms module currently imple-
ments the following algorithms:

Spectral transforms

Transforms of time-series data to the frequency-
domain underlie many methods of time-series analy-
sis. We expose previous implementations of spectral
transforms taken from mlab, Matplotlib’s library of
numerical algorithms [Matplotlib]. In addition, we
have written algorithms for the calculation of a stan-
dard periodogram and cross-spectral density estimates
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based both on regular and multi-taper periodograms.
The multi-taper periodogram was implemented here
using discrete prolate spheroidal (Slepian) sequences
([NR07], [Percival93], [Slepian78]).

Coherency

Coherency is an analog of cross-correlation between
two time-series calculated in the frequency domain,
which can be used to study signals whose underly-
ing spectral structure is similar despite containing sub-
stantial differences in the time domain. In fMRI analy-
sis, this technique is used in order to calculate the func-
tional connectivity between time-series derived from
different voxels in the brain, or different ROIs and
in order to infer the temporal relations them [Sun05].
One of the inherent problems in the analysis of func-
tional connectivity of fMRI signals is that the temporal
characteristics of the hemodynamic response in differ-
ent areas of the brain may differ due to variations in
the structure of the local vasculature in the different
regions. Consequently, the delay between neural ac-
tivity in a voxel and the peak of the ensuing influx
of oxygenated blood may differ quite significantly be-
tween different voxels, even if the neural activity which
is the root cause of the BOLD response and the quan-
tity of interest, were identical. Thus, the correlation
between the two time-series derived from the BOLD
response in two different regions may be quite low,
only because the hemodynamic response in one area
begins much later than the hemodynamic response in
the other area.
This limitation can be overcome to some degree, by
conducting the analysis in the frequency domain, in-
stead of the time domain. One type of analysis tech-
nique which examines the correspondence between two
or more time-series in the frequency domain is co-
herency analysis. Coherency is defined as:

Coherencyxy(ν) = fxy(ν)√
fxx(ν)fyy(ν)

, (1)

where fxy(ν) is the cross-spectral density between
time-series x and time-series y in the frequency band
centered on the frequency ν; fxx(ν) and fyy(ν) are the
frequency-dependent power-spectral densities of time-
series x and y respectively.
The squared magnitude of the coherency, known as
coherence, is a measure of the strength of the func-
tional coupling between x and y. It varies between
0 and 1 and will be high for two time-series which
are functionally coupled even if the delays in their re-
spective hemodynamic responses differ substantially.
The phase φ(ν) of the coherency can relay the tempo-
ral delay between the two time-series, via the relation
∆t(ν) = φ(ν)/(2πν).
Importantly, the temporal resolution at which the de-
lay can be faithfully reproduced in this method does
not depend on the sampling rate (which is rather

slow in fMRI), but rather depends on the reliabil-
ity with which the hemodynamic response is pro-
duced given a particular activity. Though the hemo-
dynamic response may vary between different subjects
and between different areas in the same subject, it is
rather reproducible for a given area in a given subject
[Aguirre98].
In our implementation, these quantities can be com-
puted with various methods to extract the cross-
spectral density fxy and the spectral densities fxx and
fyy.

Regularized coherency

In addition to the standard algorithm for computing
coherency, we have implemented a regularized version,
which permits robust computation of coherence in the
presence of small denominators (that occur for fre-
quency bands where fxx or fyy is very small). Omit-
ting the frequency ν for notational brevity, we replace
eq. (1) with:

CohRxy,αε = |αfxy + ε|2

α2(fxx + ε)(fyy + ε)
, (2)

where α and ε are real numbers. This expression tends
to Cohxy when ε→ 0, but is less sensitive to numerical
error if either fxx or fyy is very small. Specifically, if
|f | � ε then CohRxy,αε → Cohxy (where f is any of
fxx, fyy or fxy), and if f ≈ ε then:

CohRxy,αε →
(α+ 1)2

4α2 Cohxy ≈
1
4
Cohxy (3)

for α � 1. We note that this is only an order-of-
magnitude estimate, not an exact limit, as it requires
replacing ε by fxx, fyy and fxy in different parts of eq.
(1) to factor out the Cohxy term.
For the case where |f | � ε � α, CohRxy,αε → 1

α2 . In
this regime, which is where small denominators can
dominate the normal formula returning spurious large
coherence values, this approach suppresses them with
a smooth decay (quadratic in α).

Event-related analysis

A set of algorithms for the calculation of the corre-
spondence between fMRI time-series and experimen-
tal events is available in nitime. These are univari-
ate statistics calculated separately for the time-series
in each voxel or each ROI. We have implemented a
standard least squares estimate of the hemodynamic
response function in response to a series of different
events [Dale00].
In addition, we have implemented a fast algorithm for
calculation of the cross-correlation between a series
of events and a time-series and comparison of the re-
sulting event-related response functions to the baseline
variance of the time-series.
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Containers

A TimeSeries object is a container for an arbitrary
n-dimensional array of data (a NumPy ndarray ob-
ject), along with a single one-dimensional array of time
points. In the data array, the first n − 1 dimensions
are considered to describe the data elements (if n = 1,
the elements are simply scalars) and the last dimen-
sion is the time axis. Since the native storage order of
NumPy arrays is C-style (last index varies fastest), our
choice gives greater data locality for algorithms that
require taking elements of the data array and iterating
over their time index. For example, a set of recordings
from a multichannel sensor can be stored as a 2-d ar-
ray A, with the first index selecting the channel and
the second selecting the time point. In C-order stor-
age, the data for channel i, A[i] will be contiguous in
memory and operations like an FFT on it will benefit
from cache locality.
The signature of the UniformTimeSeries constructor
is:

def __init__(self, data, t0=None,
sampling_interval=None,
sampling_rate=None,
time=None, time_unit=’s’)

Any attribute not given at initialization time is com-
puted at run time from the others (the constructor
checks to ensure that sufficient information is provided,
and raises an error otherwise). The standard Python
approach for such problems is to use properties, but
properties suffer from the problem that they involve
a call to a getter function on every access, as well as
requiring explicit cache management to be done in the
getter. Instead, we take advantage of the dynamic
nature of Python to find a balance of property-like de-
layed evaluation with attribute-like static storage.
We have defined a class called OneTimeProperty that
exposes the descriptor protocol and acts like a property
but, on first access, computes a value and then sets it
statically as an instance attribute. The function is
then called only once, and any further access to the
name requires only a normal, static attribute lookup
with no overhead. The code that implements this idea,
stripped of comments and docstrings for the sake of
brevity but otherwise complete, is:

class OneTimeProperty(object):
def __init__(self,func):

self.getter = func
self.name = func.func_name

def __get__(self,obj,type=None):
if obj is None:

return self.getter
val = self.getter(obj)
setattr(obj, self.name, val)
return val

When writing a class such as UniformTimeSeries, one
then declares any property whose first computation
should be done via a function call using this class as
a decorator. As long as no circular dependencies are
introduced in the call chain, multiple such properties

can depend on one another. This provides for an im-
plicit and transparent caching mechanism. Only those
attributes accessed, either by user code or by the com-
putation of other attributes, will be computed. We il-
lustrate this with the implementation of the time, t0,
sampling_interval and sampling_rate attributes of
the UniformTimeSeries class:

@OneTimeProperty
def time(self):

npts = self.data.shape[-1]
t0 = self.t0
t1 = t0+(npts-1)*self.sampling_interval
return np.linspace(t0,t1,npts)

@OneTimeProperty
def t0(self):

return self.time[0]

@OneTimeProperty
def sampling_interval(self):

return self.time[1]-self.time[0]

@OneTimeProperty
def sampling_rate(self):

return 1.0/self.sampling_interval

We have found that this approach leads to very read-
able code, that lets us delay computation where de-
sired without introducing layers of management code
(caching, private variables for getters, etc.) that ob-
scure the main intent.
We have so far overlooked one important point in our
discussion of “automatic attributes”: the case where
the quantities depend on mutable data, so that their
previously computed values become invalid. This is a
problem that all caching mechanisms need to address,
and in its full generality it requires complex machinery
for cache state control. Since we rely on an implicit
caching mechanism and our properties become regu-
lar attributes once computed, we can not use regular
cache dirtying procedures. Instead, we have provided
a ResetMixin class that can be used for objects whose
automatic attributes may become invalid. This class
provides only one method, reset(), that resets all at-
tributes that have been computed back to their initial,
unevaluated state. The next time any of them is re-
quested, its accessor function will fire again.

Analyzers

We now describe our approach to exposing a high-
level interface to the analysis functions. We have con-
structed a set of lightweight objects called analyzers,
that group together a set of conceptually related anal-
ysis algorithms and apply them to a specific time-series
object. These objects have a compact implementation
and no significant numerical code; their purpose is to
do simple book-keeping and to allow for end-user code
that is readable and compact. Their very simplicity
also means that they shouldn’t be judged too severely
if they don’t fit a particular application’s needs: it
is easy enough to implement new analysis objects as
needed. We do hope that the ones provided by nitime
will serve many common cases, and will also be useful
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reference implementations for cases that require writ-
ing new ones.
All analyzers follow a similar pattern: they are in-
stantiated with a TimeSeries object of interest, which
they keep an internal reference to, and they expose a
series of attributes and methods that compute specific
algorithms from the library for this time series. For
all the main quantities of interest that have a static
meaning, the analyzer exposes an attribute accessor
that, via the OneTimeProperty class, calls the under-
lying algorithm with all required parameters and stores
the result in the attribute for further use. In addition
to these automatic attributes, analyzers may also ex-
pose normal methods that provide simplified interfaces
(with less parameters) to algorithms. If any of these
methods requires one of the automatic attributes, it
will be naturally computed by the accessor on first ac-
cess and this result will be then stored in the instance.
We will now present examples showing how to analyze
both synthetic and real fMRI data with these objects.

Examples: coherency analysis

Analysis of synthetic time-series

The first example we present is a simple analysis
stream on a pair of synthetic time-series (Figure 2),
of the form

x(t) = sin(αt) + sin(βt) + εx (4)
y(t) = sin(αt+ φ1) + sin(βt− φ2) + εy (5)

where εx,y are random Gaussian noise terms and φi >
0 for i = 1, 2, such that each is a superposition of two
sinusoidal functions with two different frequencies and
some additional uncorrelated Gaussian white noise and
the relative phases between the time-series have been
set such that in one frequency, one series leads the
other and in the other frequency the relationship is
reversed.
We sample these time series into an array data from
which a UniformTimeSeries object is initialized:

In [3]: TS = UniformTimeSeries(data,sampling_rate=1)

A correlation analyzer object is initialized, using the
time-series object as input:

In [4]: Corr = CorrelationAnalyzer(TS)

Corr.correlation now contains the full correlation
matrix, we extract the position [0,1], which is the
correlation coefficient between the first and the second
series in the object:

In [5]: Corr.correlation[0,1]
Out[5]: 0.28727768

The correlation is rather low, but there is a strong co-
herence between the time-series (Figure 2B) and in
particular in the two common frequencies. We see

this by initializing a coherence analyzer with the time-
series object as input:

In [6]: Coh = CoherenceAnalyzer(TS)

Figure 2. Coherency analysis - an example: A:
two synthetic time-series are displayed. B: The co-
herence is displayed as a function of frequency. C:
The coherency phase-delay between the time-series
is presented, as a function of frequency.

We examine specifically the coherence in the frequency
bands of interest with indices 2 and 6:

In [7]: Coh.coherence[0,1,2]
Out[7]: 0.9893900459215027

In [8]: Coh.coherence[0,1,6]
Out[8]: 0.97800470864819844

These two high coherence values are what gives rise
to the two prominent peaks in the coherence in Figure
2B. In addition, the relative phases are reversed in the
two frequencies composing these time series. This is
reflected in the relative phase between the time-series
(Figure 2C), which can be calculated in a similar way.

Analysis of fMRI data

Our second example (Figure 3) demonstrates the anal-
ysis of actual experimental fMRI data, acquired by
David Bressler and Michael Silver. In this experiment,
subjects fixated their gaze on a dot at the center of
the visual field and viewed a wedge-shaped section of
a circle (like a pizza slice), which slowly rotated around
the fixation dot at a rate of one full cycle every 32 sec-
onds. The wedge contained a flickering checker-board
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pattern. This pattern of stimulation is known to stim-
ulate activity in visual areas, which can be measured
with fMRI. In half of the scans, the subject was in-
structed to detect the appearance of targets inside the
checker-board pattern. In the other half of the scans,
the subject was instructed to detect targets appear-
ing in the fixation point at the center of gaze. Thus,
in both cases, the subject’s attention was engaged in
a difficult detection task (tasks were adjusted so that
the difficulty in both cases was similar). The only dif-
ference between the two conditions was whether atten-
tion was directed into the area covered by the checker-
board wedge or out of this area. Previous research
[Lauritzen09] has shown that allocation of attention
tends to increase coherence between areas in early vi-
sual cortex and between areas in visual cortex and IPS
areas (see Figure 1). Data was recorded from subjects’
brains in the scanner, while they were performing this
task. Visual ROIs were defined for each subject. These
ROIs contain the parts of cortex which represent the
areas of the visual field through which the checker-
board wedge passes in its rotation, but not the area of
the visual field close to the center of the focus of the
gaze, the area in which the fixation point is presented.
Thus, the activity measured in the experiment is in re-
sponse to the same visual stimulus of the checker-board
wedge; in half the scans, while attention is directed to
the wedge and in the other half, when attention is di-
rected away from the wedge.
In order to examine the functional connectivity be-
tween the ROIs, we start from data stored on disk in a
.npy file containing an array with time-series objects,
created from the raw fMRI data for a single subject:

In [1]: tseries_arr = np.load(’tseries.npy’)

Each TimeSeries object in this array corresponds to
the data for a separate scan, and it contains the mean
BOLD data for 7 separate ROIs (one per visual area of
interest, see Figure 3). Attention was directed to the
fixation point in the even scans and to the checker-
board wedge in the odd scans. We initialize coherence
analyzers for each of the scans and store those in which
attention was directed to the wedge separately from
those in which attention was directed to the fixation
point:

In [2]: C_fix = map(CoherenceAnalyzer,
....: tseries_arr[0::2]) # even scans

In [3]: C_wedge = map(CoherenceAnalyzer,
....: tseries_arr[1::2]) # odd scans

We extract the cross-coherence matrix for all the ROIs
in one frequency band (indexed by 1) and average over
the scans:

In [4]: mean_coh_wedge = array([C.coherence[:,:,1]
....: for C in C_wedge]).mean(0)

In [5]: mean_coh_fix = array([C.coherence[:,:,1]
....: for C in C_fix]).mean(0)

In order to characterize the increase in coherence with
attention to the wedge, we take the difference of the
resulting array:

In [6]: diff = mean_coh_wedge - mean_coh_fix

In Figure 3, we have constructed a graph (using Net-
workX [NetworkX]) in which the nodes are the visual
area ROIs, presented in Figure 1. The edges between
the nodes represent the increase in coherence in this
frequency band, when subjects are attending to the
wedge, relative to when they are attending to the ap-
pearance of targets in the fixation point. This graph
replicates previous findings [Lauritzen09]: an increase
in functional connectivity between visual areas, with
the allocation of voluntary visual attention to the stim-
ulus.
These examples demonstrate the relative simplicity
and brevity with which interactive data analysis can
be conducted using the interface provided by nitime,
resulting in potentially meaningful conclusions about
the nature of the process which produced the time-
series. This simplicity should facilitate the study of
complex data sets and should enable more sophisti-
cated methods to be developed and implemented.

Figure 3. Functional connectivity in the visual
cortex: In the graph presented, the nodes represent
the areas of the brain described in Figure 1 (node
colors and labels match those of Figure 1).

Summary and outlook

We have introduced nitime, a library for the analy-
sis of time-series data from neuroimaging experiments
and in particular from fMRI experiments, developed
as part of the NiPy project. Nitime provides imple-
mentations of several algorithms, including coherency
analysis, and a high-level interface for interaction with
time-series data. Its design emphasizes a decoupling
of algorithmic implementation and object-oriented fea-
tures. This is meant to facilitate use of the algorithms
in contexts other than neuroscience and contributions
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from developers in other fields. Future developments
will include implementations of additional algorithms
for calculation of bivariate and univariate quantities,
as well as tools for visualization of time-series.
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