algorithms.registration.histogram_registration¶
Module: algorithms.registration.histogram_registration
¶
Inheritance diagram for nipy.algorithms.registration.histogram_registration
:
Intensity-based image registration
Class¶
HistogramRegistration
¶
- class nipy.algorithms.registration.histogram_registration.HistogramRegistration(from_img, to_img, from_bins=256, to_bins=None, from_mask=None, to_mask=None, similarity='crl1', interp='pv', smooth=0, renormalize=False, dist=None)¶
Bases:
object
A class to represent a generic intensity-based image registration algorithm.
- __init__(from_img, to_img, from_bins=256, to_bins=None, from_mask=None, to_mask=None, similarity='crl1', interp='pv', smooth=0, renormalize=False, dist=None)¶
Creates a new histogram registration object.
- Parameters:
- from_imgnipy-like image
From image
- to_imgnipy-like image
To image
- from_binsinteger
Number of histogram bins to represent the from image
- to_binsinteger
Number of histogram bins to represent the to image
- from_maskarray-like
Mask to apply to the from image
- to_maskarray-like
Mask to apply to the to image
- similaritystr or callable
Cost-function for assessing image similarity. If a string, one of ‘cc’: correlation coefficient, ‘cr’: correlation ratio, ‘crl1’: L1-norm based correlation ratio, ‘mi’: mutual information, ‘nmi’: normalized mutual information, ‘slr’: supervised log-likelihood ratio. If a callable, it should take a two-dimensional array representing the image joint histogram as an input and return a float.
- dist: None or array-like
Joint intensity probability distribution model for use with the ‘slr’ measure. Should be of shape (from_bins, to_bins).
- interpstr
Interpolation method. One of ‘pv’: Partial volume, ‘tri’: Trilinear, ‘rand’: Random interpolation. See
joint_histogram.c
- smoothfloat
Standard deviation in millimeters of an isotropic Gaussian kernel used to smooth the To image. If 0, no smoothing is applied.
- eval(T)¶
Evaluate similarity function given a world-to-world transform.
- Parameters:
- TTransform
Transform object implementing
apply
method
- eval_gradient(T, epsilon=0.1)¶
Evaluate the gradient of the similarity function wrt transformation parameters.
The gradient is approximated using central finite differences at the transformation specified by T. The input transformation object T is modified in place unless it has a
copy
method.- Parameters:
- TTransform
Transform object implementing
apply
method- epsilonfloat
Step size for finite differences in units of the transformation parameters
- Returns:
- gndarray
Similarity gradient estimate
- eval_hessian(T, epsilon=0.1, diag=False)¶
Evaluate the Hessian of the similarity function wrt transformation parameters.
The Hessian or its diagonal is approximated at the transformation specified by T using central finite differences. The input transformation object T is modified in place unless it has a
copy
method.- Parameters:
- TTransform
Transform object implementing
apply
method- epsilonfloat
Step size for finite differences in units of the transformation parameters
- diagbool
If True, approximate the Hessian by a diagonal matrix.
- Returns:
- Hndarray
Similarity Hessian matrix estimate
- explore(T, *args)¶
Evaluate the similarity at the transformations specified by sequences of parameter values.
For instance:
s, p = explore(T, (0, [-1,0,1]), (4, [-2.,2]))
- Parameters:
- Tobject
Transformation around which the similarity function is to be evaluated. It is modified in place unless it has a
copy
method.- argstuple
Each element of args is a sequence of two elements, where the first element specifies a transformation parameter axis and the second element gives the successive parameter values to evaluate along that axis.
- Returns:
- sndarray
Array of similarity values
- pndarray
Corresponding array of evaluated transformation parameters
- property interp¶
- optimize(T, optimizer='powell', **kwargs)¶
Optimize transform T with respect to similarity measure.
The input object T will change as a result of the optimization.
- Parameters:
- Tobject or str
An object representing a transformation that should implement
apply
method andparam
attribute or property. If a string, one of ‘rigid’, ‘similarity’, or ‘affine’. The corresponding transformation class is then initialized by default.- optimizerstr
Name of optimization function (one of ‘powell’, ‘steepest’, ‘cg’, ‘bfgs’, ‘simplex’)
- **kwargsdict
keyword arguments to pass to optimizer
- Returns:
- Tobject
Locally optimal transformation
- set_fov(spacing=None, corner=(0, 0, 0), size=None, npoints=None)¶
Defines a subset of the from image to restrict joint histogram computation.
- Parameters:
- spacingsequence (3,) of positive integers
Subsampling of image in voxels, where None (default) results in the subsampling to be automatically adjusted to roughly match a cubic grid with npoints voxels
- cornersequence (3,) of positive integers
Bounding box origin in voxel coordinates
- sizesequence (3,) of positive integers
Desired bounding box size
- npointspositive integer
Desired number of voxels in the bounding box. If a spacing argument is provided, then npoints is ignored.
- property similarity¶
- subsample(spacing=None, npoints=None)¶
Functions¶
- nipy.algorithms.registration.histogram_registration.approx_gradient(f, x, epsilon)¶
Approximate the gradient of a function using central finite differences
- Parameters:
- f: callable
The function to differentiate
- x: ndarray
Point where the function gradient is to be evaluated
- epsilon: float
Stepsize for finite differences
- Returns:
- g: ndarray
Function gradient at x
- nipy.algorithms.registration.histogram_registration.approx_hessian(f, x, epsilon)¶
Approximate the full Hessian matrix of a function using central finite differences
- Parameters:
- f: callable
The function to differentiate
- x: ndarray
Point where the Hessian is to be evaluated
- epsilon: float
Stepsize for finite differences
- Returns:
- H: ndarray
Hessian matrix at x
- nipy.algorithms.registration.histogram_registration.approx_hessian_diag(f, x, epsilon)¶
Approximate the Hessian diagonal of a function using central finite differences
- Parameters:
- f: callable
The function to differentiate
- x: ndarray
Point where the Hessian is to be evaluated
- epsilon: float
Stepsize for finite differences
- Returns:
- h: ndarray
Diagonal of the Hessian at x
- nipy.algorithms.registration.histogram_registration.clamp(x, bins, mask=None)¶
Clamp array values that fall within a given mask in the range [0..bins-1] and reset masked values to -1.
- Parameters:
- xndarray
The input array
- binsnumber
Desired number of bins
- maskndarray, tuple or slice
Anything such that x[mask] is an array.
- Returns:
- yndarray
Clamped array, masked items are assigned -1
- binsnumber
Adjusted number of bins
- nipy.algorithms.registration.histogram_registration.ideal_spacing(data, npoints)¶
Tune spacing factors so that the number of voxels in the output block matches a given number.
- Parameters:
- datandarray or sequence
Data image to subsample
- npointsnumber
Target number of voxels (negative values will be ignored)
- Returns:
- spacing: ndarray
Spacing factors
- nipy.algorithms.registration.histogram_registration.smallest_bounding_box(msk)¶
Extract the smallest bounding box from a mask
- Parameters:
- mskndarray
Array of boolean
- Returns:
- corner: ndarray
3-dimensional coordinates of bounding box corner
- size: ndarray
3-dimensional size of bounding box
- nipy.algorithms.registration.histogram_registration.smooth_image(data, affine, sigma)¶
Smooth an image by an isotropic Gaussian filter
- Parameters:
- data: ndarray
Image data array
- affine: ndarray
Image affine transform
- sigma: float
Filter standard deviation in mm
- Returns:
- sdata: ndarray
Smoothed data array