algorithms.registration.scripting¶
Module: algorithms.registration.scripting
¶
A scripting wrapper around 4D registration (SpaceTimeRealign)
Functions¶
- nipy.algorithms.registration.scripting.aff2euler(affine)¶
Compute Euler angles from 4 x 4 affine
- Parameters:
- affine4 by 4 array
An affine transformation matrix
- Returns:
- The Euler angles associated with the affine
- nipy.algorithms.registration.scripting.aff2rot_zooms(affine)¶
Compute a rotation matrix and zooms from 4 x 4 affine
- Parameters:
- affine4 by 4 array
An affine transformation matrix
- Returns:
- R: 3 by 3 array
A rotation matrix in 3D
- zooms: length 3 1-d array
Vector with voxel sizes.
- nipy.algorithms.registration.scripting.space_time_realign(input, tr, slice_order='descending', slice_dim=2, slice_dir=1, apply=True, make_figure=False, out_name=None)¶
This is a scripting interface to nipy.algorithms.registration.SpaceTimeRealign
- Parameters:
- inputstr or list
A full path to a file-name (4D nifti time-series) , or to a directory containing 4D nifti time-series, or a list of full-paths to files.
- trfloat
The repetition time
- slice_orderstr (optional)
This is the order of slice-times in the acquisition. This is used as a key into the
SLICETIME_FUNCTIONS
dictionary fromnipy.algorithms.slicetiming.timefuncs
. Default: ‘descending’.- slice_dimint (optional)
Denotes the axis in images that is the slice axis. In a 4D image, this will often be axis = 2 (default).
- slice_dirint (optional)
1 if the slices were acquired slice 0 first (default), slice -1 last, or -1 if acquire slice -1 first, slice 0 last.
- applybool (optional)
Whether to apply the transformation and produce an output. Default: True.
- make_figurebool (optional)
Whether to generate a .png figure with the parameters across scans.
- out_namebool (optional)
Specify an output location (full path) for the files that are generated. Default: generate files in the path of the inputs (with an _mc suffix added to the file-names.
- Returns:
- transformsndarray
An (n_times_points,) shaped array containing
- nipy.algorithms.registration.affine.Rigid class instances for each time
point in the time-series. These can be used as affine transforms by referring to their .as_affine attribute.