algorithms.segmentation.segmentation¶
Module: algorithms.segmentation.segmentation
¶
Inheritance diagram for nipy.algorithms.segmentation.segmentation
:
Class¶
Segmentation
¶
- class nipy.algorithms.segmentation.segmentation.Segmentation(data, mask=None, mu=None, sigma=None, ppm=None, prior=None, U=None, ngb_size=26, beta=0.1)¶
Bases:
object
- __init__(data, mask=None, mu=None, sigma=None, ppm=None, prior=None, U=None, ngb_size=26, beta=0.1)¶
Class for multichannel Markov random field image segmentation using the variational EM algorithm. For details regarding the underlying algorithm, see:
Roche et al, 2011. On the convergence of EM-like algorithms for image segmentation using Markov random fields. Medical Image Analysis (DOI: 10.1016/j.media.2011.05.002).
- Parameters:
- dataarray-like
Input image array
- maskarray-like or tuple of array
Input mask to restrict the segmentation
- betafloat
Markov regularization parameter
- muarray-like
Initial class-specific means
- sigmaarray-like
Initial class-specific variances
- free_energy(ppm=None)¶
Compute the free energy defined as:
F(q, theta) = int q(x) log q(x)/p(x,y/theta) dx
associated with input parameters mu, sigma and beta (up to an ignored constant).
- log_external_field()¶
Compute the logarithm of the external field, where the external field is defined as the likelihood times the first-order component of the prior.
- map()¶
Return the maximum a posterior label map
- normalized_external_field()¶
- run(niters=10, freeze=())¶
- set_markov_prior(beta, U=None)¶
- ve_step()¶
- vm_step(freeze=())¶
Functions¶
- nipy.algorithms.segmentation.segmentation.binarize_ppm(q)¶
Assume input ppm is masked (ndim==2)
- nipy.algorithms.segmentation.segmentation.map_from_ppm(ppm, mask=None)¶
- nipy.algorithms.segmentation.segmentation.moment_matching(dat, mu, sigma, glob_mu, glob_sigma)¶
Moment matching strategy for parameter initialization to feed a segmentation algorithm.
- Parameters:
- data: array
Image data.
- muarray
Template class-specific intensity means
- sigmaarray
Template class-specific intensity variances
- glob_mufloat
Template global intensity mean
- glob_sigmafloat
Template global intensity variance
- Returns:
- dat_mu: array
Guess of class-specific intensity means
- dat_sigma: array
Guess of class-specific intensity variances