labs.spatial_models.bayesian_structural_analysis¶
Module: labs.spatial_models.bayesian_structural_analysis
¶
The main routine of this package that aims at performing the extraction of ROIs from multisubject dataset using the localization and activation strength of extracted regions.
This has been published in: - Thirion et al. High level group analysis of FMRI data based on Dirichlet process mixture models, IPMI 2007 - Thirion et al. Accurate Definition of Brain Regions Position Through the Functional Landmark Approach, MICCAI 2010
Author : Bertrand Thirion, 2006-2013
- nipy.labs.spatial_models.bayesian_structural_analysis.compute_landmarks(domain, stats, sigma, prevalence_pval=0.5, prevalence_threshold=0, threshold=3.0, smin=5, method='prior', algorithm='density', n_iter=1000, burnin=100)¶
Compute the Bayesian Structural Activation patterns
- Parameters:
- domain: StructuredDomain instance,
Description of the spatial context of the data
- stats: array of shape (nbnodes, subjects):
the multi-subject statistical maps
- sigma: float > 0:
expected cluster std in the common space in units of coord
- prevalence_pval: float in the [0,1] interval, optional
posterior significance threshold
- prevalence_threshold: float, optional,
reference threshold for the prevalence value
- threshold: float, optional,
first level threshold
- smin: int, optional,
minimal size of the regions to validate them
- method: {‘gauss_mixture’, ‘emp_null’, ‘gam_gauss’, ‘prior’}, optional,
‘gauss_mixture’ A Gaussian Mixture Model is used ‘emp_null’ a null mode is fitted to test ‘gam_gauss’ a Gamma-Gaussian mixture is used ‘prior’ a hard-coded function is used
- algorithm: string, one of [‘density’, ‘co-occurrence’], optional
method used to compute the landmarks
- niter: int, optional,
number of iterations of the DPMM
- burnin: int, optional,
number of iterations of the DPMM
- Returns:
- landmarks: Instance of sbf.LandmarkRegions or None,
Describes the ROIs found in inter-subject inference None if nothing can be defined
- hrois: list of nipy.labs.spatial_models.hroi.Nroi instances
representing individual ROIs