labs.spatial_models.hierarchical_parcellation¶
Module: labs.spatial_models.hierarchical_parcellation
¶
Computation of parcellations using a hierarchical approach. Author: Bertrand Thirion, 2008
Functions¶
- nipy.labs.spatial_models.hierarchical_parcellation.hparcel(domain, ldata, nb_parcel, nb_perm=0, niter=5, mu=10.0, dmax=10.0, lamb=100.0, chunksize=100000.0, verbose=0, initial_mask=None)¶
Function that performs the parcellation by optimizing the inter-subject similarity while retaining the connectedness within subject and some consistency across subjects.
- Parameters:
- domain: discrete_domain.DiscreteDomain instance,
yields all the spatial information on the parcelled domain
- ldata: list of (n_subj) arrays of shape (domain.size, dim)
the feature data used to inform the parcellation
- nb_parcel: int,
the number of parcels
- nb_perm: int, optional,
the number of times the parcellation and prfx computation is performed on sign-swaped data
- niter: int, optional,
number of iterations to obtain the convergence of the method information in the clustering algorithm
- mu: float, optional,
relative weight of anatomical information
- dmax: float optional,
radius of allowed deformations
- lamb: float optional
parameter to control the relative importance of space vs function
- chunksize; int, optional
number of points used in internal sub-sampling
- verbose: bool, optional,
verbosity mode
- initial_mask: array of shape (domain.size, nb_subj), optional
initial subject-depedent masking of the domain
- Returns:
- Pa: the resulting parcellation structure appended with the labelling
- nipy.labs.spatial_models.hierarchical_parcellation.perm_prfx(domain, graphs, features, nb_parcel, ldata, initial_mask=None, nb_perm=100, niter=5, dmax=10.0, lamb=100.0, chunksize=100000.0, verbose=1)¶
caveat: assumes that the functional dimension is 1