labs.spatial_models.structural_bfls¶
Module: labs.spatial_models.structural_bfls
¶
Inheritance diagram for nipy.labs.spatial_models.structural_bfls
:
The main routine of this module implement the LandmarkRegions class, that is used to represent Regions of interest at the population level (in a template space).
This has been used in Thirion et al. Structural Analysis of fMRI Data Revisited: Improving the Sensitivity and Reliability of fMRI Group Studies. IEEE TMI 2007
Author : Bertrand Thirion, 2006-2013
LandmarkRegions
¶
- class nipy.labs.spatial_models.structural_bfls.LandmarkRegions(domain, k, indiv_coord, subjects, confidence)¶
Bases:
object
This class is intended to represent a set of inter-subject regions It should inherit from some abstract multiple ROI class, not implemented yet.
- __init__(domain, k, indiv_coord, subjects, confidence)¶
Building the landmark_region
- Parameters:
- domain: ROI instance
defines the spatial context of the SubDomains
- k: int,
the number of landmark regions considered
- indiv_coord: k-length list of arrays,
coordinates of the nodes in some embedding space.
- subjects: k-length list of integers
these correspond to an ROI feature: the subject index of individual regions
- confidence: k-length list of arrays,
confidence values for the regions (0 is low, 1 is high)
- centers()¶
returns the average of the coordinates for each region
- kernel_density(k=None, coord=None, sigma=1.0)¶
Compute the density of a component as a kde
- Parameters:
- k: int (<= self.k) or None
component upon which the density is computed if None, the sum is taken over k
- coord: array of shape(n, self.dom.em_dim), optional
a set of input coordinates
- sigma: float, optional
kernel size
- Returns:
- kde: array of shape(n)
the density sampled at the coords
- map_label(coord=None, pval=1.0, sigma=1.0)¶
Sample the set of landmark regions on the proposed coordinate set cs, assuming a Gaussian shape
- Parameters:
- coord: array of shape(n,dim), optional,
a set of input coordinates
- pval: float in [0,1]), optional
cutoff for the CR, i.e. highest posterior density threshold
- sigma: float, positive, optional
spatial scale of the spatial model
- Returns:
- label: array of shape (n): the posterior labelling
- roi_prevalence()¶
Return a confidence index over the different rois
- Returns:
- confid: array of shape self.k
the population_prevalence
- show()¶
function to print basic information on self
- nipy.labs.spatial_models.structural_bfls.build_landmarks(domain, coords, subjects, labels, confidence=None, prevalence_pval=0.95, prevalence_threshold=0, sigma=1.0)¶
Given a list of hierarchical ROIs, and an associated labelling, this creates an Amer structure wuch groups ROIs with the same label.
- Parameters:
- domain: discrete_domain.DiscreteDomain instance,
description of the spatial context of the landmarks
- coords: array of shape(n, 3)
Sets of coordinates for the different objects
- subjects: array of shape (n), dtype = np.int_
indicators of the dataset the objects come from
- labels: array of shape (n), dtype = np.int_
index of the landmark the object is associated with
- confidence: array of shape (n),
measure of the significance of the regions
- prevalence_pval: float, optional
- prevalence_threshold: float, optional,
(c) A label should be present in prevalence_threshold subjects with a probability>prevalence_pval in order to be valid
- sigma: float optional,
regularizing constant that defines a prior on the region extent
- Returns:
- LRNone or structural_bfls.LR instance
describing a cross-subject set of ROIs. If inference yields a null result, LR is set to None
- newlabel: array of shape (n)
a relabelling of the individual ROIs, similar to u, that discards labels that do not fulfill the condition (c)