modalities.fmri.spm.model¶
Module: modalities.fmri.spm.model
¶
Inheritance diagram for nipy.modalities.fmri.spm.model
:
Class¶
SecondStage
¶
- class nipy.modalities.fmri.spm.model.SecondStage(fmri_image, formula, sigma, outputs=[], volume_start_times=None)¶
Bases:
object
- Parameters:
- fmri_imageFmriImageList
object returning 4D array from
np.asarray
, having attributevolume_start_times
(if volume_start_times is None), and such thatobject[0]
returns something with attributesshape
- formula
nipy.algorithms.statistics.formula.Formula
- sigma
- outputs
- volume_start_times
- __init__(fmri_image, formula, sigma, outputs=[], volume_start_times=None)¶
- execute()¶
Functions¶
- nipy.modalities.fmri.spm.model.Fmask(Fimg, dfnum, dfdenom, pvalue=0.0001)¶
Create mask for use in estimating pooled covariance based on an F contrast.
- nipy.modalities.fmri.spm.model.estimate_pooled_covariance(resid, ARtarget=[0.3], mask=None)¶
Use SPM’s REML implementation to estimate a pooled covariance matrix.
Thresholds an F statistic at a marginal pvalue to estimate covariance matrix.