algorithms.kernel_smooth¶
Module: algorithms.kernel_smooth
¶
Inheritance diagram for nipy.algorithms.kernel_smooth
:
Linear filter(s). For the moment, only a Gaussian smoothing filter
Class¶
LinearFilter
¶
- class nipy.algorithms.kernel_smooth.LinearFilter(coordmap, shape, fwhm=6.0, scale=1.0, location=0.0, cov=None)¶
Bases:
object
A class to implement some FFT smoothers for Image objects. By default, this does a Gaussian kernel smooth. More choices would be better!
- __init__(coordmap, shape, fwhm=6.0, scale=1.0, location=0.0, cov=None)¶
- Parameters:
- coordmap
CoordinateMap
- shapesequence
- fwhmfloat, optional
fwhm for Gaussian kernel, default is 6.0
- scalefloat, optional
scaling to apply to data after smooth, default 1.0
- locationfloat
offset to apply to data after smooth and scaling, default 0
- covNone or array, optional
Covariance matrix
- coordmap
- normalization = 'l1sum'¶
- smooth(inimage, clean=False, is_fft=False)¶
Apply smoothing to inimage
- Parameters:
- inimage
Image
The image to be smoothed. Should be 3D.
- cleanbool, optional
Should we call
nan_to_num
on the data before smoothing?- is_fftbool, optional
Has the data already been fft’d?
- inimage
- Returns:
- s_imageImage
New image, with smoothing applied
Functions¶
- nipy.algorithms.kernel_smooth.fwhm2sigma(fwhm)¶
Convert a FWHM value to sigma in a Gaussian kernel.
- Parameters:
- fwhmarray-like
FWHM value or values
- Returns:
- sigmaarray or float
sigma values corresponding to fwhm values
Examples
>>> sigma = fwhm2sigma(6) >>> sigmae = fwhm2sigma([6, 7, 8]) >>> sigma == sigmae[0] True
- nipy.algorithms.kernel_smooth.sigma2fwhm(sigma)¶
Convert a sigma in a Gaussian kernel to a FWHM value
- Parameters:
- sigmaarray-like
sigma value or values
- Returns:
- fwhmarray or float
fwhm values corresponding to sigma values
Examples
>>> fwhm = sigma2fwhm(3) >>> fwhms = sigma2fwhm([3, 4, 5]) >>> fwhm == fwhms[0] True