algorithms.statistics.models.family.links¶
Module: algorithms.statistics.models.family.links
¶
Inheritance diagram for nipy.algorithms.statistics.models.family.links
:
Classes¶
CDFLink
¶
- class nipy.algorithms.statistics.models.family.links.CDFLink(dbn=<scipy.stats._continuous_distns.norm_gen object>)¶
Bases:
Logit
The use the CDF of a scipy.stats distribution as a link function:
g(x) = dbn.ppf(x)
- __init__(dbn=<scipy.stats._continuous_distns.norm_gen object>)¶
- clean(p)¶
Clip logistic values to range (tol, 1-tol)
- INPUTS:
p – probabilities
- OUTPUTS: pclip
pclip – clipped probabilities
- deriv(p)¶
Derivative of CDF link
g(p) = 1/self.dbn.pdf(self.dbn.ppf(p))
- INPUTS:
x – mean parameters
- OUTPUTS: z
z – derivative of CDF transform of x
- initialize(Y)¶
- inverse(z)¶
Derivative of CDF link
g(z) = self.dbn.cdf(z)
- INPUTS:
z – linear predictors in GLM
- OUTPUTS: p
p – inverse of CDF link of z
- tol = 1e-10¶
CLogLog
¶
- class nipy.algorithms.statistics.models.family.links.CLogLog¶
Bases:
Logit
The complementary log-log transform as a link function:
g(x) = log(-log(x))
- __init__(*args, **kwargs)¶
- clean(p)¶
Clip logistic values to range (tol, 1-tol)
- INPUTS:
p – probabilities
- OUTPUTS: pclip
pclip – clipped probabilities
- deriv(p)¶
Derivatve of C-Log-Log transform
g(p) = - 1 / (log(p) * p)
- INPUTS:
p – mean parameters
- OUTPUTS: z
z – - 1 / (log(p) * p)
- initialize(Y)¶
- inverse(z)¶
Inverse of C-Log-Log transform
g(z) = exp(-exp(z))
- INPUTS:
z – linear predictor scale
- OUTPUTS: p
p – mean parameters
- tol = 1e-10¶
Link
¶
Log
¶
- class nipy.algorithms.statistics.models.family.links.Log¶
Bases:
Link
The log transform as a link function:
g(x) = log(x)
- __init__(*args, **kwargs)¶
- clean(x)¶
- deriv(x)¶
Derivative of log transform
g(x) = 1/x
- INPUTS:
x – mean parameters
- OUTPUTS: z
z – derivative of log transform of x
- initialize(Y)¶
- inverse(z)¶
Inverse of log transform
g(x) = exp(x)
- INPUTS:
z – linear predictors in GLM
- OUTPUTS: x
x – exp(z)
- tol = 1e-10¶
Logit
¶
- class nipy.algorithms.statistics.models.family.links.Logit¶
Bases:
Link
The logit transform as a link function:
g’(x) = 1 / (x * (1 - x)) g^(-1)(x) = exp(x)/(1 + exp(x))
- __init__(*args, **kwargs)¶
- clean(p)¶
Clip logistic values to range (tol, 1-tol)
- INPUTS:
p – probabilities
- OUTPUTS: pclip
pclip – clipped probabilities
- deriv(p)¶
Derivative of logit transform
g(p) = 1 / (p * (1 - p))
- INPUTS:
p – probabilities
- OUTPUTS: y
y – derivative of logit transform of p
- initialize(Y)¶
- inverse(z)¶
Inverse logit transform
h(z) = exp(z)/(1+exp(z))
- INPUTS:
z – logit transform of p
- OUTPUTS: p
p – probabilities
- tol = 1e-10¶
Power
¶
- class nipy.algorithms.statistics.models.family.links.Power(power=1.0)¶
Bases:
Link
The power transform as a link function:
g(x) = x**power
- __init__(power=1.0)¶
- deriv(x)¶
Derivative of power transform
g(x) = self.power * x**(self.power - 1)
- INPUTS:
x – mean parameters
- OUTPUTS: z
z – derivative of power transform of x
- initialize(Y)¶
- inverse(z)¶
Inverse of power transform
g(x) = x**(1/self.power)
- INPUTS:
z – linear predictors in GLM
- OUTPUTS: x
x – mean parameters