parrec
¶
Read images in PAR/REC format
This is yet another MRI image format generated by Philips scanners. It is an ASCII header (PAR) plus a binary blob (REC).
This implementation aims to read version 4.0 through 4.2 of this format. Other versions could probably be supported, but we need example images to test against. If you want us to support another version, and have an image we can add to the test suite, let us know. You would make us very happy by submitting a pull request.
PAR file format¶
The PAR format appears to have two sections:
General information¶
This is a set of lines each giving one key : value pair, examples:
. EPI factor <0,1=no EPI> : 39
. Dynamic scan <0=no 1=yes> ? : 1
. Diffusion <0=no 1=yes> ? : 0
(from nibabel/tests/data/phantom_EPI_asc_CLEAR_2_1.PAR
)
Image information¶
There is a #
prefixed list of fields under the heading “IMAGE INFORMATION
DEFINITION”. From the same file, here is the start of this list:
# === IMAGE INFORMATION DEFINITION =============================================
# The rest of this file contains ONE line per image, this line contains the following information:
#
# slice number (integer)
# echo number (integer)
# dynamic scan number (integer)
There follows a space separated table with values for these fields, each row containing all the named values. Here are the first few lines from the example file above:
# === IMAGE INFORMATION ==========================================================
# sl ec dyn ph ty idx pix scan% rec size (re)scale window angulation offcentre thick gap info spacing echo dtime ttime diff avg flip freq RR-int turbo delay b grad cont anis diffusion L.ty
1 1 1 1 0 2 0 16 62 64 64 0.00000 1.29035 4.28404e-003 1070 1860 -13.26 -0.00 -0.00 2.51 -0.81 -8.69 6.000 2.000 0 1 0 2 3.750 3.750 30.00 0.00 0.00 0.00 0 90.00 0 0 0 39 0.0 1 1 8 0 0.000 0.000 0.000 1
2 1 1 1 0 2 1 16 62 64 64 0.00000 1.29035 4.28404e-003 1122 1951 -13.26 -0.00 -0.00 2.51 6.98 -10.53 6.000 2.000 0 1 0 2 3.750 3.750 30.00 0.00 0.00 0.00 0 90.00 0 0 0 39 0.0 1 1 8 0 0.000 0.000 0.000 1
3 1 1 1 0 2 2 16 62 64 64 0.00000 1.29035 4.28404e-003 1137 1977 -13.26 -0.00 -0.00 2.51 14.77 -12.36 6.000 2.000 0 1 0 2 3.750 3.750 30.00 0.00 0.00 0.00 0 90.00 0 0 0 39 0.0 1 1 8 0 0.000 0.000 0.000 1
Orientation¶
PAR files refer to orientations “ap”, “fh” and “rl”.
Nibabel’s required affine output axes are RAS (left to Right, posterior to Anterior, inferior to Superior). The correspondence of the PAR file’s axes to RAS axes is:
ap = anterior -> posterior = negative A in RAS = P
fh = foot -> head = S in RAS = S
rl = right -> left = negative R in RAS = L
We therefore call the PAR file’s axis system “PSL” (Posterior, Superior, Left).
The orientation of the PAR file axes corresponds to DICOM’s LPS coordinate system (right to Left, anterior to Posterior, inferior to Superior), but in a different order.
Data type¶
It seems that everyone agrees that Philips stores REC data in little-endian format - see https://github.com/nipy/nibabel/issues/274
Philips XML header files, and some previous experience, suggest that the REC data is always stored as 8 or 16 bit unsigned integers - see https://github.com/nipy/nibabel/issues/275
Data Sorting¶
PAR/REC files have a large number of potential image dimensions. To handle
sorting of volumes in PAR/REC files based on these fields and not the order
slices first appear in the PAR file, the strict_sort
flag of
nibabel.load
(or parrec.load
) should be set to True
. The fields
that are taken into account during sorting are:
slice number
echo number
cardiac phase number
gradient orientation number
diffusion b value number
label type (ASL tag vs. control)
dynamic scan number
image_type_mr (Re, Im, Mag, Phase)
Slices are sorted into the third dimension and the order of preference for sorting along the 4th dimension corresponds to the order in the list above. If the image data has more than 4 dimensions these will all be concatenated along the 4th dimension. For example, for a scan with two echos and two dynamics, the 4th dimension will have both echos of dynamic 1 prior to the two echos for dynamic 2.
The``get_volume_labels`` method of the header returns a dictionary containing the PAR field labels for this 4th dimension.
The volume sorting described above can be enabled in the parrec2nii command utility via the option “–strict-sort”. The dimension info can be exported to a CSV file by adding the option “–volume-info”.
|
Initialize PARREC array proxy |
Exception for PAR/REC format related problems. |
|
|
PAR/REC header |
|
PAR/REC image |
|
Parse, return any PAR headers from NIfTI extensions in exts_source |
|
Make maybe mutli-line long_str into one long line |
|
Parse a PAR header and aggregate all information into useful containers. |
|
Vector with True for slices in complete volume, False otherwise |
|
Calculate volume numbers inferred from slice numbers slice_nos |
PARRECArrayProxy
¶
- class nibabel.parrec.PARRECArrayProxy(file_like, header, *, mmap=True, scaling='dv')¶
Bases:
object
Initialize PARREC array proxy
- Parameters:
- file_likefile-like object
Filename or object implementing
read, seek, tell
- headerPARRECHeader instance
Implementing
get_data_shape, get_data_dtype
,get_sorted_slice_indices
,get_data_scaling
,get_rec_shape
.- mmap{True, False, ‘c’, ‘r’}, optional, keyword only
mmap controls the use of numpy memory mapping for reading data. If False, do not try numpy
memmap
for data array. If one of {‘c’, ‘r’}, try numpy memmap withmode=mmap
. A mmap value of True gives the same behavior asmmap='c'
. If file_like cannot be memory-mapped, ignore mmap value and read array from file.- scaling{‘fp’, ‘dv’}, optional, keyword only
Type of scaling to use - see header
get_data_scaling
method.
- __init__(file_like, header, *, mmap=True, scaling='dv')¶
Initialize PARREC array proxy
- Parameters:
- file_likefile-like object
Filename or object implementing
read, seek, tell
- headerPARRECHeader instance
Implementing
get_data_shape, get_data_dtype
,get_sorted_slice_indices
,get_data_scaling
,get_rec_shape
.- mmap{True, False, ‘c’, ‘r’}, optional, keyword only
mmap controls the use of numpy memory mapping for reading data. If False, do not try numpy
memmap
for data array. If one of {‘c’, ‘r’}, try numpy memmap withmode=mmap
. A mmap value of True gives the same behavior asmmap='c'
. If file_like cannot be memory-mapped, ignore mmap value and read array from file.- scaling{‘fp’, ‘dv’}, optional, keyword only
Type of scaling to use - see header
get_data_scaling
method.
- property dtype¶
- get_unscaled()¶
Read data from file
This is an optional part of the proxy API
- property is_proxy¶
- property ndim¶
- property shape¶
PARRECError
¶
PARRECHeader
¶
- class nibabel.parrec.PARRECHeader(info, image_defs, permit_truncated=False, strict_sort=False)¶
Bases:
SpatialHeader
PAR/REC header
- Parameters:
- infodict
“General information” from the PAR file (as returned by parse_PAR_header()).
- image_defsarray
Structured array with image definitions from the PAR file (as returned by parse_PAR_header()).
- permit_truncatedbool, optional
If True, a warning is emitted instead of an error when a truncated recording is detected.
- strict_sortbool, optional, keyword-only
If True, a larger number of header fields are used while sorting the REC data array. This may produce a different sort order than strict_sort=False, where volumes are sorted by the order in which the slices appear in the .PAR file.
- __init__(info, image_defs, permit_truncated=False, strict_sort=False)¶
- Parameters:
- infodict
“General information” from the PAR file (as returned by parse_PAR_header()).
- image_defsarray
Structured array with image definitions from the PAR file (as returned by parse_PAR_header()).
- permit_truncatedbool, optional
If True, a warning is emitted instead of an error when a truncated recording is detected.
- strict_sortbool, optional, keyword-only
If True, a larger number of header fields are used while sorting the REC data array. This may produce a different sort order than strict_sort=False, where volumes are sorted by the order in which the slices appear in the .PAR file.
- as_analyze_map()¶
Convert PAR parameters to NIFTI1 format
- copy()¶
Copy object to independent representation
The copy should not be affected by any changes to the original object.
- classmethod from_fileobj(fileobj, permit_truncated=False, strict_sort=False)¶
- classmethod from_header(header=None)¶
- get_affine(origin='scanner')¶
Compute affine transformation into scanner space.
The method only considers global rotation and offset settings in the header and ignores potentially deviating information in the image definitions.
- Parameters:
- origin{‘scanner’, ‘fov’}
Transformation origin. By default the transformation is computed relative to the scanner’s iso center. If ‘fov’ is requested the transformation origin will be the center of the field of view instead.
- Returns:
- aff(4, 4) array
4x4 array, with output axis order corresponding to RAS or (x,y,z) or (lr, pa, fh).
Notes
Transformations appear to be specified in (ap, fh, rl) axes. The orientation of data is recorded in the “slice orientation” field of the PAR header “General Information”.
We need to:
translate to coordinates in terms of the center of the FOV
apply voxel size scaling
reorder / flip the data to Philips’ PSL axes
apply the rotations
apply any isocenter scaling offset if origin == “scanner”
reorder and flip to RAS axes
- get_bvals_bvecs()¶
Get bvals and bvecs from data
- Returns:
- b_valsNone or array
Array of b values, shape (n_directions,), or None if not a diffusion acquisition.
- b_vectorsNone or array
Array of b vectors, shape (n_directions, 3), or None if not a diffusion acquisition.
- get_data_offset()¶
PAR header always has 0 data offset (into REC file)
- get_data_scaling(method='dv')¶
Returns scaling slope and intercept.
- Parameters:
- method{‘fp’, ‘dv’}
Scaling settings to be reported – see notes below.
- Returns:
- slopearray
scaling slope
- interceptarray
scaling intercept
Notes
The PAR header contains two different scaling settings: ‘dv’ (value on console) and ‘fp’ (floating point value). Here is how they are defined:
DV = PV * RS + RI FP = DV / (RS * SS)
where:
PV: value in REC RS: rescale slope RI: rescale intercept SS: scale slope
- get_def(name)¶
Return a single image definition field (or None if missing)
- get_echo_train_length()¶
Echo train length of the recording
- get_q_vectors()¶
Get Q vectors from the data
- Returns:
- q_vectorsNone or array
Array of q vectors (bvals * bvecs), or None if not a diffusion acquisition.
- get_rec_shape()¶
- get_slice_orientation()¶
Returns the slice orientation label.
- Returns:
- orientation{‘transverse’, ‘sagittal’, ‘coronal’}
- get_sorted_slice_indices()¶
Return indices to sort (and maybe discard) slices in REC file.
If the recording is truncated, the returned indices take care of discarding any slice indices from incomplete volumes.
If self.strict_sort is True, a more complicated sorting based on multiple fields from the .PAR file is used. This may produce a different sort order than strict_sort=False, where volumes are sorted by the order in which the slices appear in the .PAR file.
- Returns:
- slice_indiceslist
List for indexing into the last (third) dimension of the REC data array, and (equivalently) the only dimension of
self.image_defs
.
- get_volume_labels()¶
Dynamic labels corresponding to the final data dimension(s).
This is useful for custom data sorting. A subset of the info in
self.image_defs
is returned in an order that matches the final data dimension(s). Only labels that have more than one unique value across the dataset will be returned.- Returns:
- sort_infodict
Each key corresponds to volume labels for a dynamically varying sequence dimension. The ordering of the labels matches the volume ordering determined via
self.get_sorted_slice_indices
.
- get_water_fat_shift()¶
Water fat shift, in pixels
- set_data_offset(offset)¶
PAR header always has 0 data offset (into REC file)
PARRECImage
¶
- class nibabel.parrec.PARRECImage(dataobj: ArrayLike, affine: np.ndarray | None, header: FileBasedHeader | ty.Mapping | None = None, extra: ty.Mapping | None = None, file_map: FileMap | None = None)¶
Bases:
SpatialImage
PAR/REC image
Initialize image
The image is a combination of (array-like, affine matrix, header), with optional metadata in extra, and filename / file-like objects contained in the file_map mapping.
- Parameters:
- dataobjobject
Object containing image data. It should be some object that returns an array from
np.asanyarray
. It should have ashape
attribute or property- affineNone or (4,4) array-like
homogeneous affine giving relationship between voxel coordinates and world coordinates. Affine can also be None. In this case,
obj.affine
also returns None, and the affine as written to disk will depend on the file format.- headerNone or mapping or header instance, optional
metadata for this image format
- extraNone or mapping, optional
metadata to associate with image that cannot be stored in the metadata of this image type
- file_mapmapping, optional
mapping giving file information for this image format
- __init__(dataobj: ArrayLike, affine: np.ndarray | None, header: FileBasedHeader | ty.Mapping | None = None, extra: ty.Mapping | None = None, file_map: FileMap | None = None)¶
Initialize image
The image is a combination of (array-like, affine matrix, header), with optional metadata in extra, and filename / file-like objects contained in the file_map mapping.
- Parameters:
- dataobjobject
Object containing image data. It should be some object that returns an array from
np.asanyarray
. It should have ashape
attribute or property- affineNone or (4,4) array-like
homogeneous affine giving relationship between voxel coordinates and world coordinates. Affine can also be None. In this case,
obj.affine
also returns None, and the affine as written to disk will depend on the file format.- headerNone or mapping or header instance, optional
metadata for this image format
- extraNone or mapping, optional
metadata to associate with image that cannot be stored in the metadata of this image type
- file_mapmapping, optional
mapping giving file information for this image format
- ImageArrayProxy¶
alias of
PARRECArrayProxy
- classmethod from_file_map(file_map, *, mmap=True, permit_truncated=False, scaling='dv', strict_sort=False)¶
Create PARREC image from file map file_map
- Parameters:
- file_mapdict
dict with keys
image, header
and values being fileholder objects for the respective REC and PAR files.- mmap{True, False, ‘c’, ‘r’}, optional, keyword only
mmap controls the use of numpy memory mapping for reading image array data. If False, do not try numpy
memmap
for data array. If one of {‘c’, ‘r’}, try numpy memmap withmode=mmap
. A mmap value of True gives the same behavior asmmap='c'
. If image data file cannot be memory-mapped, ignore mmap value and read array from file.- permit_truncated{False, True}, optional, keyword-only
If False, raise an error for an image where the header shows signs that fewer slices / volumes were recorded than were expected.
- scaling{‘dv’, ‘fp’}, optional, keyword-only
Scaling method to apply to data (see
PARRECHeader.get_data_scaling()
).- strict_sortbool, optional, keyword-only
If True, a larger number of header fields are used while sorting the REC data array. This may produce a different sort order than strict_sort=False, where volumes are sorted by the order in which the slices appear in the .PAR file.
- classmethod from_filename(filename, *, mmap=True, permit_truncated=False, scaling='dv', strict_sort=False)¶
Create PARREC image from filename filename
- Parameters:
- filenamestr
Filename of “PAR” or “REC” file
- mmap{True, False, ‘c’, ‘r’}, optional, keyword only
mmap controls the use of numpy memory mapping for reading image array data. If False, do not try numpy
memmap
for data array. If one of {‘c’, ‘r’}, try numpy memmap withmode=mmap
. A mmap value of True gives the same behavior asmmap='c'
. If image data file cannot be memory-mapped, ignore mmap value and read array from file.- permit_truncated{False, True}, optional, keyword-only
If False, raise an error for an image where the header shows signs that fewer slices / volumes were recorded than were expected.
- scaling{‘dv’, ‘fp’}, optional, keyword-only
Scaling method to apply to data (see
PARRECHeader.get_data_scaling()
).- strict_sortbool, optional, keyword-only
If True, a larger number of header fields are used while sorting the REC data array. This may produce a different sort order than strict_sort=False, where volumes are sorted by the order in which the slices appear in the .PAR file.
- header_class¶
alias of
PARRECHeader
- classmethod load(filename, *, mmap=True, permit_truncated=False, scaling='dv', strict_sort=False)¶
Create PARREC image from filename filename
- Parameters:
- filenamestr
Filename of “PAR” or “REC” file
- mmap{True, False, ‘c’, ‘r’}, optional, keyword only
mmap controls the use of numpy memory mapping for reading image array data. If False, do not try numpy
memmap
for data array. If one of {‘c’, ‘r’}, try numpy memmap withmode=mmap
. A mmap value of True gives the same behavior asmmap='c'
. If image data file cannot be memory-mapped, ignore mmap value and read array from file.- permit_truncated{False, True}, optional, keyword-only
If False, raise an error for an image where the header shows signs that fewer slices / volumes were recorded than were expected.
- scaling{‘dv’, ‘fp’}, optional, keyword-only
Scaling method to apply to data (see
PARRECHeader.get_data_scaling()
).- strict_sortbool, optional, keyword-only
If True, a larger number of header fields are used while sorting the REC data array. This may produce a different sort order than strict_sort=False, where volumes are sorted by the order in which the slices appear in the .PAR file.
exts2pars¶
- nibabel.parrec.exts2pars(exts_source)¶
Parse, return any PAR headers from NIfTI extensions in exts_source
- Parameters:
- exts_sourcesequence or Nifti1Image, Nifti1Header instance
A sequence of extensions, or header containing NIfTI extensions, or an image containing a header with NIfTI extensions.
- Returns:
- par_headerslist
A list of PARRECHeader objects, usually empty or with one element, each element contains a PARRECHeader read from the contained extensions.
one_line¶
- nibabel.parrec.one_line(long_str)¶
Make maybe mutli-line long_str into one long line
parse_PAR_header¶
- nibabel.parrec.parse_PAR_header(fobj)¶
Parse a PAR header and aggregate all information into useful containers.
- Parameters:
- fobjfile-object
The PAR header file object.
- Returns:
- general_infodict
Contains all “General Information” from the header file
- image_infondarray
Structured array with fields giving all “Image information” in the header
vol_is_full¶
- nibabel.parrec.vol_is_full(slice_nos, slice_max, slice_min=1)¶
Vector with True for slices in complete volume, False otherwise
- Parameters:
- slice_nossequence
Sequence of slice numbers, e.g.
[1, 2, 3, 4, 1, 2, 3, 4]
.- slice_maxint
Highest slice number for a full slice set. Slice set will be
range(slice_min, slice_max+1)
.- slice_minint, optional
Lowest slice number for full slice set. Default is 1.
- Returns:
- is_fullarray
Bool vector with True for slices in full volumes, False for slices in partial volumes. A full volume is a volume with all slices in the
slice set
as defined above.
- Raises:
- ValueError
if any value in slice_nos is outside slice set indices.
vol_numbers¶
- nibabel.parrec.vol_numbers(slice_nos)¶
Calculate volume numbers inferred from slice numbers slice_nos
The volume number for each slice is the number of times this slice number has occurred previously in the slice_nos sequence
- Parameters:
- slice_nossequence
Sequence of slice numbers, e.g.
[1, 2, 3, 4, 1, 2, 3, 4]
.
- Returns:
- vol_noslist
A list, the same length of slice_nos giving the volume number for each corresponding slice number.