algorithms.registration.affine¶
Module: algorithms.registration.affine
¶
Inheritance diagram for nipy.algorithms.registration.affine
:
Classes¶
Affine
¶
- class nipy.algorithms.registration.affine.Affine(array=None, radius=100)¶
Bases:
Transform
- __init__(array=None, radius=100)¶
- apply(xyz)¶
- as_affine(dtype='double')¶
- compose(other)¶
Compose this transform onto another
- Parameters:
- otherTransform
transform that we compose onto
- Returns:
- composed_transformTransform
a transform implementing the composition of self on other
- copy()¶
- from_matrix44(aff)¶
Convert a 4x4 matrix describing an affine transform into a 12-sized vector of natural affine parameters: translation, rotation, log-scale, pre-rotation (to allow for shearing when combined with non-unitary scales). In case the transform has a negative determinant, set the _direct attribute to False.
- inv()¶
Return the inverse affine transform.
- property is_direct¶
- property param¶
- param_inds = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]¶
- property pre_rotation¶
- property precond¶
- property rotation¶
- property scaling¶
- property translation¶
Affine2D
¶
- class nipy.algorithms.registration.affine.Affine2D(array=None, radius=100)¶
Bases:
Affine
- __init__(array=None, radius=100)¶
- apply(xyz)¶
- as_affine(dtype='double')¶
- compose(other)¶
Compose this transform onto another
- Parameters:
- otherTransform
transform that we compose onto
- Returns:
- composed_transformTransform
a transform implementing the composition of self on other
- copy()¶
- from_matrix44(aff)¶
Convert a 4x4 matrix describing an affine transform into a 12-sized vector of natural affine parameters: translation, rotation, log-scale, pre-rotation (to allow for shearing when combined with non-unitary scales). In case the transform has a negative determinant, set the _direct attribute to False.
- inv()¶
Return the inverse affine transform.
- property is_direct¶
- property param¶
- param_inds = [0, 1, 5, 6, 7, 11]¶
- property pre_rotation¶
- property precond¶
- property rotation¶
- property scaling¶
- property translation¶
Rigid
¶
- class nipy.algorithms.registration.affine.Rigid(array=None, radius=100)¶
Bases:
Affine
- __init__(array=None, radius=100)¶
- apply(xyz)¶
- as_affine(dtype='double')¶
- compose(other)¶
Compose this transform onto another
- Parameters:
- otherTransform
transform that we compose onto
- Returns:
- composed_transformTransform
a transform implementing the composition of self on other
- copy()¶
- from_matrix44(aff)¶
Convert a 4x4 matrix describing a rigid transform into a 12-sized vector of natural affine parameters: translation, rotation, log-scale, pre-rotation (to allow for pre-rotation when combined with non-unitary scales). In case the transform has a negative determinant, set the _direct attribute to False.
- inv()¶
Return the inverse affine transform.
- property is_direct¶
- property param¶
- param_inds = [0, 1, 2, 3, 4, 5]¶
- property pre_rotation¶
- property precond¶
- property rotation¶
- property scaling¶
- property translation¶
Rigid2D
¶
- class nipy.algorithms.registration.affine.Rigid2D(array=None, radius=100)¶
Bases:
Rigid
- __init__(array=None, radius=100)¶
- apply(xyz)¶
- as_affine(dtype='double')¶
- compose(other)¶
Compose this transform onto another
- Parameters:
- otherTransform
transform that we compose onto
- Returns:
- composed_transformTransform
a transform implementing the composition of self on other
- copy()¶
- from_matrix44(aff)¶
Convert a 4x4 matrix describing a rigid transform into a 12-sized vector of natural affine parameters: translation, rotation, log-scale, pre-rotation (to allow for pre-rotation when combined with non-unitary scales). In case the transform has a negative determinant, set the _direct attribute to False.
- inv()¶
Return the inverse affine transform.
- property is_direct¶
- property param¶
- param_inds = [0, 1, 5]¶
- property pre_rotation¶
- property precond¶
- property rotation¶
- property scaling¶
- property translation¶
Similarity
¶
- class nipy.algorithms.registration.affine.Similarity(array=None, radius=100)¶
Bases:
Affine
- __init__(array=None, radius=100)¶
- apply(xyz)¶
- as_affine(dtype='double')¶
- compose(other)¶
Compose this transform onto another
- Parameters:
- otherTransform
transform that we compose onto
- Returns:
- composed_transformTransform
a transform implementing the composition of self on other
- copy()¶
- from_matrix44(aff)¶
Convert a 4x4 matrix describing a similarity transform into a 12-sized vector of natural affine parameters: translation, rotation, log-scale, pre-rotation (to allow for pre-rotation when combined with non-unitary scales). In case the transform has a negative determinant, set the _direct attribute to False.
- inv()¶
Return the inverse affine transform.
- property is_direct¶
- property param¶
- param_inds = [0, 1, 2, 3, 4, 5, 6]¶
- property pre_rotation¶
- property precond¶
- property rotation¶
- property scaling¶
- property translation¶
Similarity2D
¶
- class nipy.algorithms.registration.affine.Similarity2D(array=None, radius=100)¶
Bases:
Similarity
- __init__(array=None, radius=100)¶
- apply(xyz)¶
- as_affine(dtype='double')¶
- compose(other)¶
Compose this transform onto another
- Parameters:
- otherTransform
transform that we compose onto
- Returns:
- composed_transformTransform
a transform implementing the composition of self on other
- copy()¶
- from_matrix44(aff)¶
Convert a 4x4 matrix describing a similarity transform into a 12-sized vector of natural affine parameters: translation, rotation, log-scale, pre-rotation (to allow for pre-rotation when combined with non-unitary scales). In case the transform has a negative determinant, set the _direct attribute to False.
- inv()¶
Return the inverse affine transform.
- property is_direct¶
- property param¶
- param_inds = [0, 1, 5, 6]¶
- property pre_rotation¶
- property precond¶
- property rotation¶
- property scaling¶
- property translation¶
Functions¶
- nipy.algorithms.registration.affine.inverse_affine(affine)¶
- nipy.algorithms.registration.affine.preconditioner(radius)¶
Computes a scaling vector pc such that, if p=(u,r,s,q) represents affine transformation parameters, where u is a translation, r and q are rotation vectors, and s is the vector of log-scales, then all components of (p/pc) are roughly comparable to the translation component.
To that end, we use a radius parameter which represents the ‘typical size’ of the object being registered. This is used to reformat the parameter vector (translation+rotation+scaling+pre-rotation) so that each element roughly represents a variation in mm.
- nipy.algorithms.registration.affine.rotation_mat2vec(R)¶
Rotation vector from rotation matrix R
- Parameters:
- R(3,3) array-like
Rotation matrix
- Returns:
- vec(3,) array
Rotation vector, where norm of vec is the angle
theta
, and the axis of rotation is given byvec / theta
- nipy.algorithms.registration.affine.rotation_vec2mat(r)¶
The rotation matrix is given by the Rodrigues formula:
R = Id + sin(theta)*Sn + (1-cos(theta))*Sn^2
with:
0 -nz ny
- Sn = nz 0 -nx
- -ny
nx 0
where n = r / ||r||
In case the angle ||r|| is very small, the above formula may lead to numerical instabilities. We instead use a Taylor expansion around theta=0:
R = I + sin(theta)/tetha Sr + (1-cos(theta))/teta2 Sr^2
leading to:
R = I + (1-theta2/6)*Sr + (1/2-theta2/24)*Sr^2
To avoid numerical instabilities, an upper threshold is applied to the angle. It is chosen to be a multiple of 2*pi, hence the resulting rotation is then the identity matrix. This strategy warrants that the output matrix is a continuous function of the input vector.
- nipy.algorithms.registration.affine.slices2aff(slices)¶
Return affine from start, step of sequence slices of slice objects
- Parameters:
- slicessequence of slice objects
- Returns:
- affndarray
If
N = len(slices)
then affine is shape (N+1, N+1) with diagonal given by thestep
attribute of the slice objects (where None corresponds to 1), and the :N elements in the last column are given by thestart
attribute of the slice objects
Examples
>>> slices2aff([slice(None), slice(None)]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) >>> slices2aff([slice(2, 3, 4), slice(3, 4, 5), slice(4, 5, 6)]) array([[ 4., 0., 0., 2.], [ 0., 5., 0., 3.], [ 0., 0., 6., 4.], [ 0., 0., 0., 1.]])
- nipy.algorithms.registration.affine.subgrid_affine(affine, slices)¶
Return dot prodoct of affine and affine resulting from slices
- Parameters:
- affinearray-like
Affine to apply on right of affine resulting from slices
- slicessequence of slice objects
Slices generating (N+1, N+1) affine from
slices2aff
, whereN = len(slices)
- Returns:
- affndarray
result of
np.dot(affine, slice_affine)
whereslice_affine
is affine resulting fromslices2aff(slices)
.
- Raises:
- ValueErrorif the
slice_affine
contains non-integer values
- ValueErrorif the
- nipy.algorithms.registration.affine.threshold(x, th)¶
- nipy.algorithms.registration.affine.to_matrix44(t)¶
t is a vector of affine transformation parameters with size at least 6.
size < 6 ==> error size == 6 ==> t is interpreted as translation + rotation size == 7 ==> t is interpreted as translation + rotation + isotropic scaling 7 < size < 12 ==> error size >= 12 ==> t is interpreted as translation + rotation + scaling + pre-rotation